Magazine Science

De l'antimatière pour propulser une fusée dans l'espace?

Publié le 21 juillet 2011 par Benjamin Bradu

Au mois de novembre 2010, une équipe du CERN avait réussi à mettre de l’antimatière en boite  pendant quelques fractions de secondes et au mois de mars 2011 c’est pendant 20 minutes que les physiciens ont capturé de l’antihydrogène dans un piège…

antimatière-1

L’antimatière a toujours interpellé les auteurs de science-fiction depuis sa découverte dans les années 30 étant donné que l’énergie produite par la rencontre de matière et d’antimatière est colossale. Voilà une nouvelle qui relance l’idée de savoir si l’antimatière pourrait un jour être utilisée pour la propulsion spatiale comme dans Star Trek.

antimatière-2

Mesurer l’énergie

L’énergie se mesure en Joule mais cette unité n’est pas très commode et peu représentative. Pour avoir une unité de mesure plus parlante et pour comparer les énergies facilement, on parlera plutôt en kilogramme équivalent pétrole ou « kep » qui correspond à l’énergie calorifique que l’on peut extraire d’un kilogramme de pétrole. Pour information, 1 kg de pétrole permet de produire 42 millions de Joules sous forme de chaleur lorsqu’on le brûle (combustion). Pour se rendre compte de ce que cela représente, un européen moyen consomme en moyenne 10 kep par jour.

uss enterprise

L’USS Enterprise de Star Trek fonctionne à l’antimatière.


A titre de comparaison, la fission nucléaire exploitée dans nos centrales nucléaires permet de récupérer environ 10 000 kep par kilogramme d’uranium, soit une concentration énergétique bien supérieure qu’avec la combustion du pétrole. De même, la fusion thermonucléaire qui se produit dans les étoiles et qui pourrait être à long terme une nouvelle source d’énergie pour l’homme sur Terre (voir ITER) permet de récupérer environ 15 millions de kep dans un kilogramme de mélange Deutérium-Tritium.

Et l’antimatière alors ? Selon la célèbre formule E=mc² d’Einstein, 1 kg de matière contient potentiellement 90 millions de milliards de Joules, soit 2 milliards de kep, ce qui correspond à une densité d’énergie 2 milliards de fois supérieure au pétrole et 200 000 fois supérieure à l’uranium avec la fission nucléaire de nos centrales.

Petit résumé des équivalents énergétiques:

-   1 kg de bois (par combustion) = 0,3 kep

-   1 kg de charbon (par combustion) = 0,7 kep

-   1 kg de fioul (par combustion) = 0,95 kep

-   1 kg d’essence (par combustion) = 1,05 kep

-   1 kg d’uranium naturel (par fission nucléaire) = 10 000 kep

-   1 kg de Deutérium-Tritium (par fusion thermonucléaire) = 15 millions de kep

-   1 kg d’antimatière (par annihilation matière-antimatière) = 2 milliards de kep

Exploiter l’antimatière

Pour comprendre ce qu’est l’antimatière, je vous invite à lire un de mes billets précédents sur l’antimatière mise en boite au CERN.

Sur le papier, la solution de l’antimatière pour notre avenir énergétique parait bien évidemment la meilleure. Mais deux grands problèmes se posent (et pas des moindres) :

-   Comment créer des quantités suffisantes d’antimatière sans dépenser trop d’énergie

-   Comment stoker l’antimatière

Aujourd’hui, l’antimatière est créée dans des accélérateurs de particules en quantité infime et il faut dépenser beaucoup (mais alors beaucoup) plus d’énergie que ce que la quantité d’antimatière pourrait produire. En bref, ce n’est absolument pas rentable. De plus, pour la stocker, il faut fabriquer un piège bien particulier pour maintenir l’antimatière en lévitation dans le vide car le moindre contact avec de la matière ordinaire l’annihile instantanément.

Pour vous rendre compte des ordres de grandeurs, dans un kilogramme d’hydrogène, il y a environ 602 millions de milliards de milliards d’atomes. Il faudrait donc créer autant d’antihydrogènes pour pouvoir faire 1 kilogramme d’antimatière. Or, quand une expérience du CERN annonce avoir réussi à confiner de l’antimatière pendant 16 minutes, ce n’est pas 1 kilogramme mais seulement 309 antiatomes ! L’énergie pouvant être extraite de ces 309 antiatomes est de l’ordre d’un millième de milliardième de milliardième de kep (1.10-15 kep), soit rien du tout. Je précise que pour accomplir cet exploit, on a dû consommer une énergie colossale en comparaison à ces quelques antiatomes…

CERN Alpha
L’expérience alpha du CERN qui a capturé 309 antihydrogènes pendant 1000 secondes. © CERN.

Le CERN a produit a peu près un milliardième de gramme d’antimatière durant ces 10 dernières années pour un coût estimé de plusieurs centaines de millions d’euros. On voit bien que cette solution n’est aujourd’hui absolument pas envisageable comme source d’énergie.

Une fusée qui carbure à l’antimatière

Pour propulser une fusée, la problématique est différente car on ne cherche pas à faire de l’énergie la moins chère possible sans polluer mais à embarquer un minimum de carburant pour un maximum de puissance. L’antimatière se relève alors être une excellente candidate. Pour mieux vous rendre compte, une mission vers la planète Mars doit embarquer environ 250 tonnes de carburant conventionnel (hydrogène et oxygène liquides) pour un voyage de presqu’une année alors que 10 milligrammes d’antimatière seraient suffisants pour aller sur mars en 1 mois seulement selon la NASA [source]. Toujours selon la NASA, un coût de 250 millions de dollars serait suffisant pour produire ces 10 milligrammes d’antimatière (sous forme de positrons) avec les technologies actuelles. Dans ce cas, cette solution pourrait être envisagée mais tout de même coûteuse.

NASA schema
Schéma de principe du moteur à antimatière pensé par la NASA pour aller sur Mars. © NASA.

En fait, les « moteurs à antimatière » actuellement à l’étude n’utilisent pas forcément directement l’énergie d’annihilation matière/antimatière pour la propulsion mais exploitent les rayonnements énergétiques (appelés rayons gamma) qui sont produits lors de la rencontre matière/antimatière. Ce rayonnement permet alors de chauffer un fluide comme l’hydrogène. Cependant, il faut tout de même fabriquer cette antimatière avant sur Terre et l’embarquer dans ce moteur et cela est encore loin d’être possible avec les technologies actuelles mais sûrement pas impossible à long terme. Affaire à suivre.

Pour aller plus loin:

New and Improved Antimatter Spaceship for Mars Missions (NASA)

Antimatter Rocket (Wikipedia)

Antimatter (Wikipedia)

FAQ sur l’antimatière 1 (CERN)

FAQ sur l’antimatière 2 (CERN)

Des atomes d’antimatière piégés pendant mille secondes au CERN


Retour à La Une de Logo Paperblog

A propos de l’auteur


Benjamin Bradu 597 partages Voir son profil
Voir son blog

l'auteur n'a pas encore renseigné son compte l'auteur n'a pas encore renseigné son compte

Dossiers Paperblog